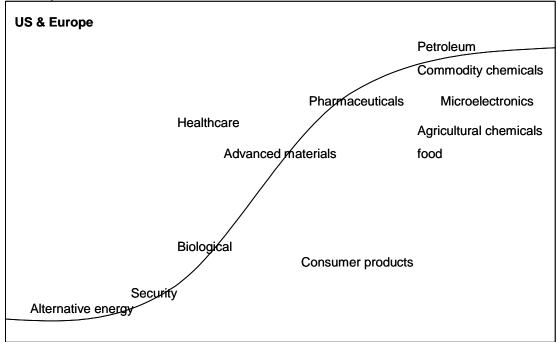
Session 1: Speculation on 2015

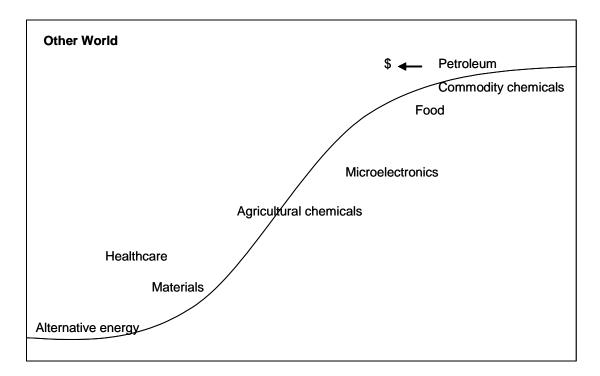
Workshop participants, divided into six groups, addressed the questions

- Which industries that will hire ChEs are likely to be emerging, developing, or mature in 2015 and beyond? (depicted on S-curve)
- What are the venues (labs, office computers, manufacturing floors), processes, and products anticipated in the next decade and beyond?
- They were to distinguish between US/Europe and the rest of the world.
- The objective was to set a context for what is needed in a curriculum, and to engage the experience of the industrial practitioners.

Discussion after individual reports were presented

- In these reports, notice several new topics vs. what was emphasized in 2003 workshops
 - o e.g., water supply and quality, defense, home security
 - Petrochemical seems to be more important than in 2003
- Global warming, C-tax, H₂ issues not covered
- Think fundamentally identify the driving forces for curriculum change
- Universities should stay aware of emerging technologies, so that they can adjust ChE preparation, if needed.
- Globalization, off-shoring <u>can</u> be resisted, so US manufacturing may not be over yet. (e.g., Sanyo plant in Midwest US is the largest manufacturer of TV sets)
- Train ChEs to be more than innovators in high tech- they must serve the needs of mature industries, too.
- There are also replacement positions to fill in mature industries so traditional preparation is needed
- Not much in the discussion goes outside US/Europe. Why?
 - Lack of knowledge?
 - How to help students prepare for worldwide employment?
- In Shell's international growth, the plan is to staff overseas plants with local people, so that we don't educate engineers in the US to run overseas plants.
- Who will pay for a new ChE curriculum?


Individual group reports follow:


Frontiers in Chemical Engineering Education Proceedings - Session 1

2005 June 8-10

Group 1

What should the ordinates be -- demand for graduates? technology? money?

Frontiers in Chemical Engineering Education Proceedings - Session 1

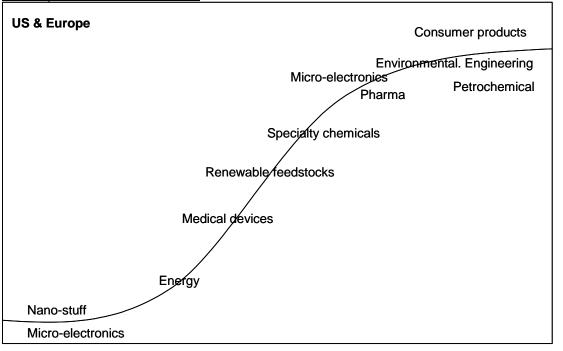
Venues for Chemical Engineers in 2015

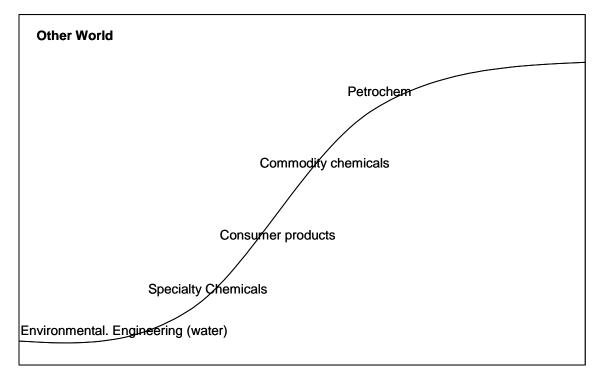
- Home (increase!)
 - Possible because of enabling technology
- Factories (decrease)
 - Exporting of manufacturing/\$ tax
 - Enabling tech needs fewer people
 - Office (increase)
 - CAD tools
 - Coordination/Project Management
- Laboratories/Pilot Plant (mixed)
 - Biological industries (increase)
 - R&D is being exported (decrease)
- Health care facilities (increase)
 - Health care demand increasing; more engineers involved.
- Road
 - Sales
 - Consultant
 - Field work

Industries that will Employ Chemical Engineers in 2015

- Pharmaceutical
- Biological
- Agriculture
- Food
- Consumer products
- Health care
- Environmental
- Polymers
- Industrial biotech
- Electronic materials
- Transportation
- Finance/management
- Technical consulting
- Law/medicine
- Fuels
 - Exploration
 - Conventional
 - Advanced
- Academics
- Grad school
- Telecommunications
- Fine chemicals
- Petrochemicals
- Engineering/construction
- Advanced materials
 - Many applications

2015 Speculation


- Safety
 - Homeland security
 - Consulting
 - Sensors
- Military/defense


Processes and Products in 2015

- Green chemistry
- Life cycle analysis (value recognition)
 - (EU is ahead of US)
- Customized products (health, consumer)
 - (Especially US)
- Molecular electronics

Group 2

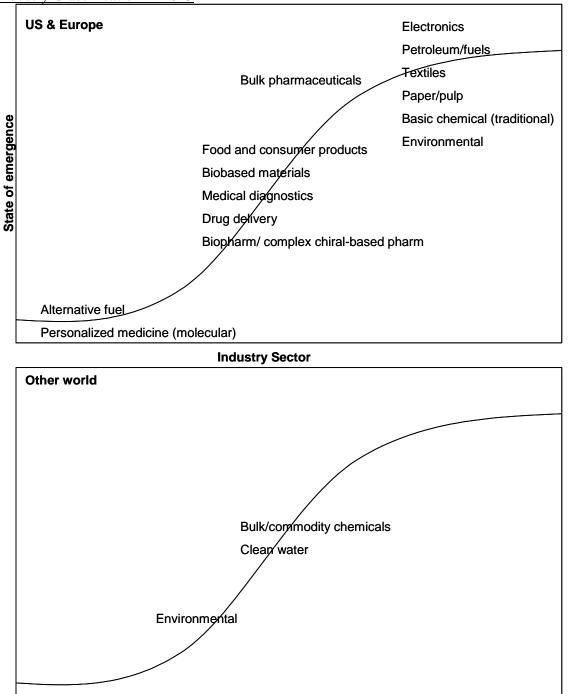
- Trend to "Information Technology" and innovation in US (does this increase need for PhD instead of BS?) and farming out manufacturing to rest of the world
- Short-term replacement staffing
- Research more important

Venues in 2015

٠

- Commodity Chemicals require manufacturing/office
- Labs are good for: •
 - Applied statistics
 - "Messiness" of data
 - Appreciation of technical aspects
 - Market Research/Product Development
 - Distill the needs of customer
- Pseudo-sales => on the road => different countries ٠
 - engineers more directly involved with customers
- Working globally
 - Cultural issues are important
- Technology broker ٠
 - 24-hour workforce

Products in 2015


- Composites/materials
- Cheaper electronics/sensors •
- Nanotechnology
- Cheaper Healthcare products
 - Medical Devices
 - 3rd World
 - Socialized medicine

Processes in 2015

- Process and products still equally important
- Process flexibility/batch processing/ scheduling/ lean manufacturing
- Smaller scale => flexible/ transportation
 - Reduce hazardous material shipping
 - Local/regional raw materials (raw material costs, rather than labor costs, are dominant influence on plant location)
- Operations (continuous improvement) & Process Optimization (at BS level)
- Is there an opportunity for engineers in "traditional" careers to stay competitive?
 - An engineering renaissance?

Group 3

Industries

- Mature
 - Pharmaceuticals
 - Energy/fuels
 - Medical technology

- Basic chemicals
- Food & consumer products
- Electronics
- Middle
 - Materials
 - Transportation
 - Paper, pulp
 - Textiles
- Early
 - Packaging
 - Biotech
 - Service

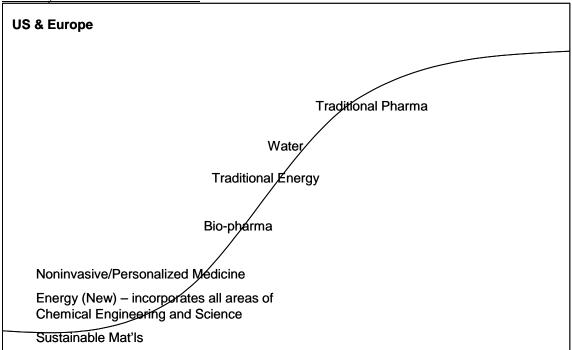
Venues in 2015

- Manufacturing specialty small-scale operations
- Tech service/ operations/ control
- Earlier (in career) leadership opportunities./ appreciation of big picture
- Non-co-located/ digitally connected
- Large computer data analysis role
- Sales
- Education of ChEs to interact with, or move to, other professions

Processes in 2015 (products are increasingly driving the processes)

- Cell-free synthesis
- Molecular engineering
- Microreactors
- HTS
- Computer aided conceptual design/ system integration


Products in 2015 (product and process are integrated/connected)


- Customer/ user driven
- Disposables/ recyclables
- Functional materials (nanocomposites)
- Drug delivery
- Body parts
- Electro/optical materials
- Microreactors

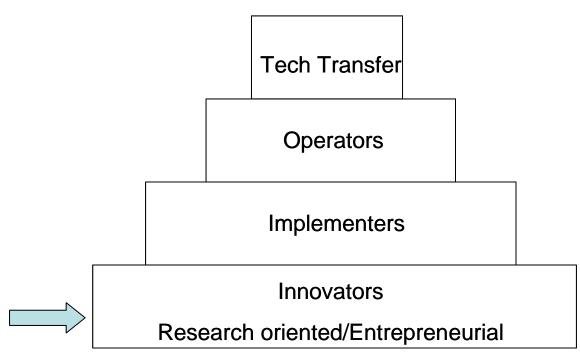
Other Thoughts

- Is there a specialty polymer industry?
- Impact of macro-trends driving forces
 - Environmental awareness, and molecular medicine
- Innovation/create new things
 - Need for engineers to innovate based on human needs rather than technology-driven
 - What are other academic areas doing?

Group 4

Distinction as to state of maturity not necessarily clear for single industry

- What is limiting factor?
 - Materials
 - Intellectual
- Innovation, technical centers growing in Asia
 - Will US-trained engineers be marketable in those regions?
- Local innovation
- Consequence of globalization:
 - Growth of jobs for engineers greatest elsewhere
 - Growth in US limited to areas growing in US but not elsewhere: innovation, entrepreneurial


Drivers for the future

- Healthcare
 - Devices new materials/nano
 - Emphasis moving from acute to chronic conditions
 - Non-invasive
 - Biomarkers
 - Imaging
 - Personalized medicine
 - Bridge to bio, electronics
- Water Quality & Management especially the processes
 - Developing World
 - Pollution

Proceedings - Session 1

- Improved Separations
 - Desalination
 - Contaminant removal (ions)
 - Improved distribution
- New separation methods
- Energy
 - Supply
 - Demand
 - Moving to sustainable materials, and away from petroleum
 - Will ChEs contribute to nuclear energy?
- Food and nutrition
 - Standard of living up in developing world
 - Is there enough land?

Functions of US Chemical Engineers

Growing relative to other functions

Needed in US: A smaller number of people capable of more complex work.

Engineers will be innovators, bridging science and its deployment in society. Need depth of training, more than at present.

Group 5

Industry Classification

Emerging in 2015	Mature in 2015
Global finance (mergers, acquisitions)	Consulting
Consulting (?)	Manufacturing-commodity

- ? Making stuff
- ? New technology in mature industries
- ? "think" work vs. "do" work
 - (design/development/making molecules)

Industries in various stages will have different uses for engineers. Thus ChEs need to be educated to serve a variety of tasks in a variety of industries.

Driving Forces in 2015

- Energy supply
- Information technology/ computing/ instrumentation
- External
 - Regulatory
 - Financial buyers
 - Security
 - Changing age demographics
- Where are the ChE students going?
 - Law, finance, service, manufacturing
- Perception
 - Students
 - Public
 - Regulatory

Four Points

- 2015 is tomorrow
- ChE is vital to every industry sector (so chemical engineers need to be educated about multiple industries)
- Globalization has many facets understand its dimensions
- Need to focus on technology/innovation rather than the emerging-vs.-mature dichotomy (if you are not "emerging", you will not survive in 15 years)

Group 6

—				
Characteristics	of Emonation	Davialoning	and Matura	Induction
Unaracieristics	or Emerging	. Developing.	and wanne	mansmes

Emerging (E)	Developing (D)	Mature (M)
Research	Increased manufacturing	Process
Laboratory	Process design	Yield
Simulation	(pilot plant)	Quality
Product (beaker)	Simulation Manufacturing	
		Improvement
		Less R&D more maintenance
		"virtual" management
		International

Note that a Mature Industry should not be disregarded; although not developing technology as fast as E and D companies, it may nevertheless have a major effect on the economy and employment.

Industry Classification in 2015

- Petrochemical (M+)
- Coatings (M)
- Microelectronics (M)
- Automotive (M)
- Transportation (M)
- Paper/pulp (M)
- Finance industries (M)
- Engineering/ Construction/ Design (M)
 - Project management
- Bulk Chemicals (M)
 - Natural products (D)
- Healthcare
 - Drugs
 - Chemical pharmaceutical (D)
 - Biological pharmaceutical (D)
 - Medical devices (D)
 - Diagnostic devices (D)
 - Consumer products (D)
 - Genetic engineering (E)
 - Artificial organs (E)
 - Tissue engineering (E)
- Materials
 - Plastics (M)
 - Polymer (M)
 - Nanotechnology (D)
 - Biological (E)
 - Advanced (E)
- Specialty Chemicals
- Energy

- Fossil fuels (coal, gas, oil) (M)
- Nuclear (M)
- Biomass (D)
- H₂ (D)
- Fuel cells (D)
- Solar (D)
- Infrastructure (D)
- Biotechnology
 - Industrial (M)
 - Food (M)
 - Environmental (D)
- Personal care (D)
 - Cosmetics
- Defense
 - Plant safety (D)
 - Sensors (E)
 - Biological counter-measures (E)
- Optoelectronics (D)
- Software tool development (D)
- Environmental consulting (D)
- Aerospace (D)
- Carbon management (E)
- Spintronics (E)